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ABSTRACT

S,

?v'i.“his report,:the seventh of a series ‘,“-;,Mpresents a theoretical
analysis c; the viscd?eal when operating in turb\ilent flow. The general
approach taken was to modify the Navier-Stokes equations for use in
turbulent flow. Using an approach similar to that of S. I. Pai, the velocity
profile in the seal was represented as a power series and a solution of the
resulting flow equations resulted in an equation for the sealing coefficient
suitable for laminar or turbulent flow.

An approximate method has been devised wherein the friction
data for ordinary pipe flow can be utilized to determine the experimental
factors in the sealing equation. From the experimental study of ten seal

geometries it was observed that the agreement between theory and experi-

ment was quite satisfactory for purposes of seal design.
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CHAPTER I
INTRODUCTION AND ANALYTICAL HISTORY OF THE VISCO SEAL
I. INTRODUCTION

The visco seal, which has been referred to in literature as screw
seal, spiral groove seal, threaded seal, viscosity pump, and viscosity
seal, is a rotating device which will develop a pressure gradient in the
fluid annulus around a shaft by means of helical grooves located either:
on the shaft or in the housing. The basic elements of a visco seal are
shown in Figure 1. Since there is normally no contact between the rotating
shaft and the housing, the visco seal has been considered for use in critical
apparatus which require long life, such as liquid metals systems in space N
power plants and pumps and compressors in nuclear power reactor systems
as well as in various pumps, compressors, and turbines in more conven-
tional systems. The increased interest in visco seal application in both
the aerospace and basic industries was the impetus for this work.

Analytical work on the visco seal has been limited primarily to
the laminar flow case. The means of predicting the operation of the visco
seal in the turbulent region has been, in the main, empirical. The object
of this study is to develop a theory for predicting the performance of the
visco seal when operating in the turbulent range, and to deterhine the
correlation between the theory developed and experimental evidence
obtained for a number of seal geometries,
II. HISTORICAL PRESENTATION OF LAMINAR VISCO SEAL ANALYSES

The first notable laminar analysis of the visco seal was presented
by Rowell and Finlayson [1} 1 in 1928, Starting with the Navier-Stokes
equations for two-dimensional incompressible flow and assuming the clearance
between the screw and housing to be zero, Rowell and Finlayson developed

an equation for the discharge from a visco pump which neglected the effects

INumbers in brackets refer to similarly numbered references listed at the

end of this report.
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of the screw helix angle, a. This equation is:

8.8) inh

Lo 5w
Q=271 a3 i=1 13 (cosh i;th +1)

oo inh

2 inh s
- jhaP + 81 AP Z > ] . (1)
244 L "SHL =1 i° (cosh-i-j’-‘-ll+l)

Equation (1) was believed to be suitable for visco pumps having a small
helix angle. When the helix angle was large enough to be significant,

Rowell and Finlayson recommended that the discharge be evaluated as:

o)
irh
2 2 8 tanh _2"'"
25 cos” @ 8Ucos o R
Q= a.n 73 13
(1+7%) =1
@
inh 2
_|h_ _6 tanh 3; 2s5“ cos? @ sina AP - (2)
12 = = 5 (1 +% 2 WL

While Rowell and Finlayson were considering the device as a pump whiéh
could obtain a theoretical maximum efficiency of 33.33 per cent, they
envisioned the visco pump being operated at shut off head or no-flow
condition, thus becoming a visco seal. Setting the discharge equal to

zero and defining a sealing coefficient, equation 2 becomes:

i
Pt

[#8]
S
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It is noted that the sealing coefficient in equation 3 depends upon the groove
depth, groove width, and helix angle, but does not distinguish between
laminar and turbulent operation. Thus, the sealing pressure developed would
be a linear function of the shaft speed. Rowell and Finlayson considered the
geometry of the grooves in regard to their effect on the pump performance but
did not attempt to establish an optimum seal geometry.

Whippie [2] develeoped a theory for the pressure distribution and
load capacity for a herringbone type thrust bearing. His equations can be

transformed to apply to the present seal geometry. The equation for the

sealing coefficient based on Whipple's work becomes:

_sMuL

-C. (w.) = APc?

(83 + 1) + 283 [%};ﬁhb ®% - 1)2 cos 2 (90 - Q)

®3-1) (8- 1) sin 2 (90 ~ 0)

S

(4)

Whipple determined the optimum geometry, giving a minimum value of the
sealing coefficient as 10.96, resulting when B = 3.61, 7= 0.5, anda =
13.75°. Hughes [3] utilized the results of Whipple's equation in con-
structing a visco seal and experimentally showed that the sealing pressure
came within 12 per cent of the theoretical value predicted by equation (4).
Zotov [4] assumed the flow to consist of three components:
the annulus flow parallel to the shaft axis due to the pressure gradient,
the flow along the grooves caused by the pressure gradient, and the flow
along the grooves due to the rotation of the shaft. The three flow

components were identified as: land pressure flow,

2
Q = m4ﬂDi1_1;,C (a + b) ) (5)

groove pressure flow
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2 .
=k tDAPjh” tana sina ,
Qg 12 /{L (a + b) (6)

and groove rotational flow,

7D U hj sina
Qg = : ’ (7)

2 (a+b) (.fl.+ 1) [1+ 4h, 1) c
J j h
where the factors m and k are given by:
_0075

m=5.31x 10‘3(03)
and |

k=1-0.63 (%)

when 0 <-2- < 0.8. Combining equations (5), (6), and (7) to form the total
flow, and setting this quantity equal to zero, which represents the condition
of sealing, the sealing coefficient becomes:

6&] L

5:C-z)= "2, p

. _ (a-l-b)z
<Gy 5] dme ot -

( ) ?sina

Equation (8) is a function of groove width, land width, helix angle, groove

depth, and clearance. Equation (8) does not, however, take into account
turbulence. As the rotational speed increases, Zotov's theoretical seal-
ing coefficient, like Rowell and Finlayson's and Whipple's, will remain
constant. Optimizing Zotov's equation produces a sealing coefficient of
8.69 for a screw geometry of 7= 0.63, = 14.5°, and B = 4.12.

One of the earliest reports in which experimental data are re-
corded either for a visco pump or a visco seal operating in the turbulent

region was presented by Frossel [5] . Limited analvtical work is
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incorporated in this paper which is primarily devoted to reporting experi-
mental data for the various screw threads tested. Frossel uses an equation
developed by Gumbel to describe the discharge from the visco pump as:

. 2
Q= 2ih (Ucosoz-h—-d-g—- . @)
d¢

2 6L

In developing equation (9), Gumbel assumed one dimensional flow along
the grooves only. Thus equation (39), written| in terms of the sealing coef-
ficient, becomes:

= 6 UL _ 2
.C. = = h a 1
C G.) ~ P tan (10)

Frossel concludes that for a visco pump the trapexoidal thread shapes

S

are the most practical, since they have the largest flow cross-section
with the lowest fricitional loss. Frossel notes in his discussion that as
the shaft speed was increased, discontinuities occurred in the data
which were attributed to turbulence. Frossel made no attempt, however,
to predict the point where turbulence occurs or how the visco pump should
behave during turbulent operation.

- Asanuma [6] analyzed the performance of the visco pump by
considering the pump delivery to be composed of two parts: actual

delivery and flow leakage. Asanuma's equation for the sealing coefficient

was: 3 5
s G 5 UL=B 7(1—7)Clsm a+ 1 )
(a.) czAP 37(1—7)02 sin o cos
where
~
2 2 -
p-1 88" (c 1 im i
C1 ( 5 ) -4 (a) -—i4 sin 5 [cos 5 -1) ] tanh
i=1

= (&) - 1)



and

2
_ (-1 (8+2) 3 -1
Cy = 53 *'B Fl—( ) ]

= 2
- ig_B (—g) Z —é— [cos % - ¢t } tanh '-lé% (%) . (13)
In equation (11) the sealing coefficient is a function of groove width and
depth, clearance, land width, and helix angle, but is independent of
rotational speed. Asanuma suggests that the best sealing coefficients
will be obtained for 7= 0.5, a=10°to 11° and B = 6.0.

McGrew and McHugh [7] reported experimental data obtained
from tests in both laminar and turbulent operation and presented an ana-
lytical solution for the sealing performance under laminar conditions.
McGrew and McHugh, following the work of Zotov, assumed that the total
flow in the pump is comprised of three main components: a flow due to
shear, a minus pressure flow in the grooves, and a negative leakage flow.

The equation for the total flow in the pump becomes:

o= nhU(s*- a) coszoz _ nhs(s*—a) cos @ sina AP
- c 12 L
2 (1+h)
3
Ex Dsc AP
12 [[nal ' (14)

Setting equation (14) equal to zero, McGrew and McHugh's sealing coef-

ficient becomes:
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s G _sMuL _6-1°Te3(1-1)+EB 24+ 1) (15)
Yr(M.M.) 2 - 2 )
c“ AP B-1)"7Jt-7)
where
E=1+1.5¢2

The theoretical sealing coefficient in equation (15) is a function of clearance,

groove depth, groove and land widths, helix éngle, and eccentricity ratio
but is independent of speed. Minimizing the sealing coefficient, equation
(15) produces a sealing coefficient of 9.83 for ) =0.5, a=21.6°, and

B = 3.78. For the turbulent analysis of the visco seal McGrew and McHugh
employed a Prandtl mixing length type of solution, and expressed the axial
pressure gradient in terms of three experimentally determined factors. The
equation which best fits McGrew and McHugh's data, and the one used to
describe operation in the turbulent region is:

-1
s s8HUL _gloa13+ 131107 Rey %] . (10)

'C'(MZM;)O- c2 AP

The empirical factors in equation (16) were obtained from the data
for a single screw geometry and affords no provision for a change in seal
geometry.
A recent source of data for the operation of the visco seal in -

turbulent flow was published by King [8] who used the equation,

-1
n
6 UL
8.C.,. . s—,,L——-=3 C.+C, Re ] , (17)

developed by McGrew and McHugh. King fits equation (17) to his experi- |
mental data and can therefore determine the experimental constants.
The analytical solution which appears to best describe the laminar
operation of the visco seal was presented by Boon and Tal [9] . Stair [10] '
whose laminar analysis of the seal parallels Boon and Tal's, both refines and
expands the equations developed by Boon, arriving at a sealing coefficient

of:
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sc  =8Mur_fa+defTa-N 612

6.~ 2,5 tYa-De*-ve-

Equation (18) is dependent on land and groove width, groove depth, clear-

(18)

ance, and helix angle. Optimizing equation (18) results in a sealing
coefficient of 10.97 for a seal having 7= 0.5, B=3.65, anda = 15.68°.
III. COMPARISON OF LAMINAR ANALYSES FOR THE VISCO SEAL
A comparison of the laminar analyses for the visco seal is pre-
sented in Figure 2. All theories are compared using the same geometrical
screw configuration of 7 =0.63, B=3.38, anda = 14.5°. The sealing
coefficients in Figure 2 were computed as
6 EU )
c2 AP
which required modification of some equations in order to gain a common
ground for comparison. Rowell and Finlayson's and Gumbel's equations,
both of which were derived neglecting the leakage flow across the lands,
appear to be considerably in error, while the predictions of McGrew and
McHugh (e = 0), Zotov, Whipple, Asanuma, and Boon and Tal compare more
favorably with the experimental values.
The approach taken in this work will be to extend Boon and Tal's
laminar analysis for the sealing coefficient of the visco seal to both laminar

and turbulent operation.
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CHAPTER II
DEVELOPMENT OF THE SEALING COEFFICIENT
I. BASIC FLOW EQUATIONS

In analyzing the flow in the visco seal it will be assumed that
the film thickness is small as compared to the radius. Hence, neglecting
the curvature of the seal the problem reduces to the one shown in Figure 3.
It is noted, however, that for smail diameter shafts and high rotational
speeds this assumption becomes less valid due to the centrifugal acceler-
ation of the fluid. The basic describing equations will be written in the
§ . 7? » and z coordinates and later transposed to the x, y, and z
coordinates. The two sets of coordinate axes are related by:

§ =cosa+ysina (19)

and

]

TZ ycosa -~ x sina . (20)
The Navier-Stokes equations for a Newtonian fluid, neglecting
body forces and assuming that the flow is incompressible, steady, and

laminar, are:

Tl v u (21)
977+ u \VAR'Z (22)

and

Pty L
The law of continuity requires that:

0y g—ﬁ’ T= . (24)

To apply equations (21) through (24) to turbulent flow, the instan-
taneous velocity component may be considered to contain two parts: the
mean velocity component and the turbulent fluctuating component. This

ceoncept can also be applied to the pressure. Therefore:

az+ uv w . (23)
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u=u+u' (25)

v=;+v, (26)

w=w+w', (27)
and

P=P+P. (28)

Using equations (25) through (28) in equations (21) through (Z4) and time
averaging and combining equations (21) through (24), the Reynolds equations,
as reported by Pai [1 1] , are formed. Hence:

UUES Fablht ablas S

(30)

and

2= _ p_Ouw _ p_OQvw _ P 3?‘ , (1)

In equations (29) through (31), all three turbulent fluctuating
velocity components are assumed to be of the same order of magnitude.
Noting that Az is small as compared to A § and A'/( and assuming v_v is
negligible with negligible pressure change in the z direction, the Reynolds

equations become:




-14~

OP 9% u - Ju'w! A
ot~ Heer P (32)
and
P _ 32; _ ov'w'

Equations (32) and (33) are the describing differential equations which will
be applied to the visco pump and later simplified for the visco seal.
II. BASIC FLOW EQUATIONS APPLIED TO THE CONDITIONS
OF THE VISCO PUMP

In a screw pump, since a>>cand b >> hg, the flow is approxi-
mated by assuming that it resembles flow between two sets of flat plates: one
set of plates being separated by the distance c, the other by hg. In defense
of this assumption, it should be noted that in a visco pump the order of
magnitude of a and b is approximately 100 to 1000 that of ¢ and hg respec-
tively. The problem now simplifies to that shown in Figure 4. The flow
equations will be developed in a general form and the results applied to both
the grooves and the lands.

In order to acquire a solution for equations (32) and (33) as applied
to a visco pump two parameters are required: the mean velocity distribution
and a relationship for the turbulent wall shear, T o+ The approach taken in
this work, therefore, is similar to the one used by Pai, in which the velocity
distribution for turbulent flow was approximated with a power series. An

approximation of this nature is required since a functional relationship

bhetweean

'w'and z and v! w' and z does not exist, Pai analvzed the
problem of turbulent flow between parallel plates for two cases. The first
case consisted of the top plate moving with the bottom one fixed, or turbu-
lent Couette flow. In the second case the flow is due to a pressuré
gradient, or turbulent Poiseuille flow. In the visco pump both types of
flow exist. While equations (32) and (33) are non-linear and do not lend
themselves to the principal of superposition, the approximations used for

the mean veiocity profile are well behaved convergent series. Therefore,
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Figure 4. Model for groove and land flow.
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the flow will be analyzed as purely Couette and purely Poiseuille and then
added vectorially to produce an approximation of the total discharge.

The important physical parameters in this problem are the shear-
ing stress at the wall T . the density of the fluid p . the absolute
viscosity of the fluid [,L . the time averaged velocity of the fluid, and a
characteristic length. Rewriting equations (32) and (33) in a non-dimensional

form by incorporating the parameters in Table I, they become:

2_ -
*c%— oL Pu" @ ) will. g2y P2 4y, (34)

3¢* 8% a2 5 4

and
2= 2
1 (PN Py MM A PY 4, (35)
6 an* 62 dz*2 5 dz*
Simplifying,
55 u dz U* dre
- + = OI (36)
8)§* pulé dz’kz dz‘*
and
— 1 2 *
e w l d V + d In =0 . (37)

*x *9 *
9 n p vlé dz 2 dz
The boundary conditions for equations (36) and (37) as applied to

the visco pump are:

a. Poiseuille flow

U;=0 at z*=Il (28}
* * +
VP’O atz =-1 (39)

U . =0 atz =-1 (40)
ct

*
* =1/2 Ucosa ., "~ (41)
ct u
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TABLE I
DIMENSIONLESS PARAMETERS

U* = " Velocity, § * direction
1
T, 1/2
u1 = [_b"—;—'— ] Reference velocity, § * direction
v* = z Velocity, 7? * direction
1
T 1/2
v, = —5—4 ] Reference velocity, T( * direction
r. = u'w'
£ w?
ro = v'w'!
N 2
- P-P;
w =
£ puy?
-  P-P
w =
N pv?
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*

*

Vct=0 atz =-1 (42)
* i *
V. o=- 12 LSRE 5% (43)
ct vy
*
b Tp =0 atz =y 1 (44)
2 *
=0 atz =+ 1 (45)

m

c. o =0 atz*=-1, §*=0, n=o (46)

—_— *

*
w =0 atz =-1, ¢*=0, =0. (47)
n ¢ n

Employing the dimensionless parameters in Table I, the shear at
the walls for Poiseuille and Couette flow are related as follows:

a. Poiseuille flow

* *

R1§ =+ dUP at z —;1 (48)

dz*

* *

Rln =+ dvp atz = 1 (49)

dz*

b. Couette flow

*

d Uq
Ria =—p atz*=+ 1 (50)

1§ dz -
-dv*
= Ct * _
Rln =g atz =+ 1. (51)
Integration of equations (36) and (37) wiih respect to z* gives:
*
1 du * _
R1§ P +r§ C5 z* = CG . (52)
and
1 dv* * _
"R s +r7z -Cyz -—CB, (53)
n
where the pressure gradients in the ; * and 72* directions were assumed

9
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to be constant.

Applying the boundary conditions for Poiseuille flow in the
positive § direction, equations (52) and (53) become:

*
dU
1 P
- +r -z*¥=0, (54)
R dz*
1 ¢
and
A
1 P +r -z*¥=0, (55)

) Rn? dz* N

Again integrating with respect to z* , equations (54) and (55) become:

z*
R
Uy = —lf— (1 - z#2) +R, f r. dz* (56)
sl ¥
and

z*

: R

* _ 1In 2

VP = —-—'-Z (1-2z*7) + Rln[ rlT( dz*. (57)

-1

Since equations (56) and (57) cannot be solved directly because of
thf lack Sf a functional relationship between I and z*, an expression for
UP and VP, in terms of a power series of z*, is assumed. The velocity
distribution in Poiseuille flow is symmetrical about the center line. There-

fore, an even power series solution will be used. Hence,

* 2 ZN £ A\
UP=CQ (1+C10 z* -l-('}11 z*¥"7) {56}
and
* 2 2N
= *
VP (312 1+ 013 z*" 4 c14 z ) ., (59)

where higher order terms are neglected and N and N' are any positive integer

greater than one.
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Using the boundary conditions expressed in equations (38), (39),
* — * —
(48), and (49), and U, =ug /u1 at z* = 0 and VP= vg /V1 at z* =0,

equations (58) and (59) become:

- F, - N l1-TF
*_u 3 o2 il S— 60
UP_u_.L(1+ N1 txo; o) (60)
1
and
. v F, -N' , 1-F, N
SR —_ . % T z¥ . 61
Ve =vo AT 2 W ) (61)
In equations (60) and (61),
. S L
§ 2u€
and
vi R
P o=t AN
TZ 2V¢
which when simplified become
T
- —f
F = =
§ Z_ll__i_
and
F o= —20
n 2 U vy
9
Therefore, F and F. can be expressed as the ratio of the shearing

stress on thé wall in turbulent flow to the shearing stress on the wall for

laminar flow with the same maximum velocity.

Thus,
T f
AL g
¢ Tt e

§
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and '
T £
F = T° = f° . (63)
T A\Te/n “m
With the relationship
d P _ Tog - M (d; \ )
3§ z z dz /|, -5
;¢ is found in terms of the pressure gradient é;/a § Hence,
u, = 0 % [_N-1 J (64)
and similarly,
- 5% >3 [ N' - 1 J 65)
V¢ T 2l A7 F —N'l-‘7Z :
‘Thus equations (60) and (61) become:
2 _ y _
s TN O L 1-F¢  .on) , 6
P [Luy f\é‘ N-1 N-1 J
and
2K = F N' 1-F
V* = 5 N 2P 1+ A z*2 + — z’“r2NI (67)
P vy AT N'-1 N'-1 ’
where
1£ T2 Fg - NI—‘§ !
and )
ko L ( N'-1
17? 2 F - N FT

Equations (66) and (67) are the non-dimensional velocity equations for

Poiseuille flow in the visco pump.

Applying the boundary conditions for Couette flow to equations

(52) and (53) and integrating, the describing equations for the velocity

become:
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z*
*
- * *
U, ng (z +1)+R1§f r, dz* , (68)
-1

and

VA
*

Vd = - Rln (Z* + 1) + RlT[ fl rT2 dz* . (69)

Because of the inability in evaluating the integral in equations
(68) and (69), a power series solution will again be assumed. * However, in
Couette flow the velocity distribution is not symmetrical about the center

line, so an odd power series is used. Therefore,

« 2M+1

*
U =Cls(1+c z* + C ) . (70)

ct 16 17 2

and

* 2M*'+1
= * %*
Vct C18 (1+Clgz +020z ) .,

(71)
where higher order terms are neglected and M and M' are any positive
integer. Using the boundary conditions as expressed in equations (40), (41),

(42), (43),(50), and (51), equations (70) and (71) become:

* =U~cosd‘ (1+ 2 M- H~§ + 1 z*+H§ -1 z*2M+1) (72)
ct 2 u, 2M 2 M !
and
v oo Usina .o 2M'-Hy +1 . Hn ‘lz*ZM'+1) (73)
ct 2 v1 2M! B ZM? !
where
2R u
H, = 1€ ™1 .
< U cos
and
ZRin V1
Hy = 7T sina

"
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Equations (72) and (73) are the non-dimensional velocity equations for
Coutitte flow in the § * and n * directions.
A The velocity distribution in the v1sco pump is represented by
the vectorial summation of the Couette and Poiseullle velocity components.

Thus,

* * *
U '_Uct-UP
and
V* V* V*
“Yet P’
or
.U*_Ucosa1+1+ZM'H§ z*+Hg ”122M+1
Zu1 2M M
2
K, -
.0 7k e [, B "N 2 1°F on (74)
[, ag N-1 N-1 g
and
yr = _ U sind 1+1+2M"Hn Z*+Hn -1 Z*ZM'H]
2v1 2M! 2M!
57K, 37 Fp =N 5 1-Fy N
14 ————z%" 4 ——— 2 . (75)
Uy an N'-1 N'-1

From experimental measurements of Poiseuille flow between paral-

lel flat plates performed by Laufer [12] , Pal determined a relation between

Nanc T and N'and T Thus,
3 7
N=1.40 F§
and (76)
N'=1.40F
As a similar relation between M and H and M' and H has not been

experimentally determined, the same relationship that exists in Poiseuille

flow will be assumed. Hence,
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M=1.40H
and § (77)
M'=1.40H .
Simplifying, equations 7(?74) and (75) become:
1+1.8H H -1
Ur = o282 [ TeE. T oeE Z*ZM+1]
1 R T E
.7 T1g 3% ~.4 F, 9 - F z*ZN]
1+ z* + .
Ly, 3¢ 1.4F -1 1.4F, -1
(78)
and
1+1.8H H -1 '
V*__Usina[1+ n 2% + n z*ZM+1J
2 v, 2.8H, 2.8H,
2
K2k _
VY- Lo 2P 2 _1-Fn 2N
v *T.ar, -1% *1ar, -1°% .
Uy, aT( 2 In 2T (79)

Equations (78) and (79) apply to both the lands and the grooves.
Therefore, the mean velocity components are as follows:

along the lands,

- 1+1.8H . He -1 2M+1
~ _Ucosa [1+ £ (z_z_)+ £ (_25)

r 2 2.8 H§ c Z'BHE c

_CZKIE la-l;) . -.4F [ 22) . 1-F,
s \a ¢/, 1.4 -1 \c/ l.4F, -1
2N
2z
=) ™.,
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along the grooves,

— 1+1.8H H -1 2M+1
5 _Ucosa [1 £ /Zz) . £ (Zz)

g 2 2.8 H, \pg 2.8 H, hg
2 —
by Kig (ap) [“ -4 (22)2+ 1-F
4 \df L L4F -1 \hg 14 -1
2N |
=)™
g

across the lands,

J=_Usina |, 1+1.8 Hy (Zz)+Hn -1 (g)ZM“]
2 Z.BHY\ c Z.BHn c

2 _ 2N’
o] Kln [ aP) [1+ -.4 Fn IZZ) . l_FYI ) (_ZE) ].
a) \an/, 1.4F 1.4F, -1'° :

n " 1 \ c
and across the grooves,

v =

U sin a 1+ 1.8Hy (2, Hy -1 2z 2M'+1
R

2.8H, \h/ ' 2.8H, \h

_hg" K (J_P) [1+ -.4 Fn 9zt 2 1-Fn _21) ZN]

i Vet 1.4 Fn - 1 (’H;} *T.aFn -1 \h

9 (83)

The total flow in the visco pump is composed of three basic
components: § directed land flow, § directed groove flow, and TI
directed groove or land flow. The axial velocity components may be
expressed as:

u =usina (84)
b4
and

Vv =vcosQa . (85)
Y . A Y
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From these velocity components, the flow components Q r Q g’ and
Q r or Q g’ are computed. For the visco pump the width of the flow
path for the § land flow is (1 - 7 ) =D and the path width for § groove

flow is THD. The axial component of the § land flow becomes:

c/2

Q§r=(1-T)ﬂD[ Ersinadz
J-c/2

or
!Uccosasina
Q§ =0-7) 2
|
c K1§ sina /3-15 . +£ (—.4-P§ \+ c
4 \5§r °73 L4F, -1)72N+1
1-F
3
]}
Similarly,
h
_ U.gcosasina
Q §g" 7’(]3 2
2
-hg K1§sina [ OF . _,_29 ( -.4F )+ hg
Ay \agg 973 14f - 1/7 2N+
(1-F ] , | (87)
\1.4 F —1)
§
= 1D { U csind cos G
Q'fzr T i- 2
czKln cosa /3 p c ~.4 Fp ) c
- m \an)r[c‘”s (1.4?,1 —1/ Toan 1
1-F
{_ n
\l.4F -1)] ’ (88)
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and

_Uhg sin @ cos @

Qng=1tD 2
h 2 - h -4F
_g” Kppcos a (a p) [h_g+_g ( n )+ hy
Ay YAE 3 1.4F -1/ 2N'+1
)
. (89)
\1.4°F, - 1))

The pressure gradients in equations (86) through (89) can be re-

written in terms of the axial pressure gradient. Thus,

—_—==—— sina , 90
v (90)

_ a‘p) (c)?) _ dp
a-=7) %ﬁrﬁk —-—ang G cosa - (91)

Substituting equation (90) into equations (86) and (87) and simpliinng using

and

the terms in Table II, the flow components become:_

Uccosdsina

o§r=<1-7)nn ;

3

2
K, sin o —
1r dP _ _
4»‘1 _dy {1 K2§ +K3§] / (92)

and /

Q§g

(o]

- TﬂD .UBcco;a sin o

\ .
3 2 _
) (Bc) Klgsin o P

oy o [1—K2§ +K3§]} . (93)

,‘

The total flow from the visco pump is:

Q=Q§g+Q§r+Qnr=Q§g+Q§r+ Qng ,
since

o
Q. =Q

e ~7nr
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TABLE II

DIMENSIONLESS SIMPLIFYING TERMS

>
i

1 [ N-1 ) 1
1§ 2 \Fg -NF§

Kl)'( = ; (PT?':II\I'PTI )= :zl

0.4FF
Kz§ =3.2 F§ ¥ 3
' 0.4F
K = 7
2N 4.2 Fy) -3
l-Fg

K3§ .92 7 2_1.4 Pg- 1

1-Fp,
K = {
3N 3.9 Fy 2-1.4F7? -1

K4=—3K1€ (1-KZ§ +K3§ )

1<5=-31<172 (1-K277 +K37Z )

Il=(1_7)tz

12=B37' t2
1, = g3
7+83a-7)

FE - 1.4F§ ’
F7? - 1.4 Pn

r

4

:t[l-7+ ',)’B_ 7:53(1" 7)*‘ 7(6-1)]

3 ..
J +8° (1-

0%
i)
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Solving for ( dP/9d 72 )r from equation (91) and simplifying:

_ g3dP
[d P)=B dy .
\anf 7+B3(1—7),

cos

4Ly sina (B - 1)7
2

2¢c KITI (1-x2n+x3n) [7+63 (1-7)] ’

Therefore, Q nr becomes:
3 2 _
Qu. =D U c sina cos & (c B) Kl?? cos“ a &
nr s [Teeda-y)) @

-k +K )_cUsinacosa(B-l) ] (95)
Mmoo [T+ a-1)]

Writing the sine and cosine functions as tangents, the equation for the

(1

total disdharge from the visco pump is:

Uct °3K1; g dp
Q=(1-7)xD 5 (1—K2§ +K3§)a;

4L
3 2
Bc)"K,p t —
UBct 13 dp

(BC)SKl >
+ 2D [_ Uct 7 dP

2 sl [T+ 8° i1-7)](1—K27?

_cutd -1 ]
2 [T+ 68 a-7)]

(36)
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In equation (96) the only terms to be determined empirically are functions
of F and Pn which are related to Poiseuille flow. Hence, the
assimption involved in equation (77) is of no consequence in this solution.
Applying equation (96) to a visco seal, simplifying with the terms in
Table II, and substituting

_ AP _dpP
L dy '
the sealing coefficient is formed. Thus,
6 [,L UL I.+1 1
AE—-—Z—-———=K4 (—1-1——1) +K5 (3—3—). (97)
c AP 4 4

In equation (97) when K 4 and K,5 are unity, the equation reduces to the
laminar form of the sealing coefficient as in equation (18). The terms
K 4 and KS in equation (97) can be evaluated by two methods. K 4 and K5
could be determined by observing actual test data from the visco seal.
The solution that will be incorporated in this work will be to estimate K 4
and KS from experimental data for common pipe flow. This procedure will
allow K 4 and Ks, and thus equation (97), to be predicted before any
experimental data on the visco seal are obtained.

Pinkus [13] predicted that for rotating concentric cylinders,

turbulence would be initiated at or before a Reynolds number equal to:

2c

For the visco seal an average critical Reynolds number is defined as:

1/2
Re = 41.1 [—D—] . (98)

1 /n

i D/2 i/ a
'Recrit. = 41.1 { ] . (99)

(1—7)c+ TB c

In Figure 5, which relates resistance coefficients and Reynolds

numbers for pipe flow, the resistance coefficient for laminar flow is
represented by the equation:
64
Al‘ Re

(100)

-

P
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Figure 5. Resfstance coefficient versus Reynolds number for pipe flow.
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The coefficient of resistance in the transition and turbulent regions was
represented by two lines. One line was estimated by extending a straight
line from the turbulent smooth pipe curve to its interception with equation

(100). This line is represented by the equation,

0.326

o§ - Rel00.253'

corresponding to flow along the grooves. The other line representing the

f (101)

flow across the grooves was assumed to be typified by a line constructed
by extending the turbulent curve for a roughness ratio of approximately

0.03 to intercept with equation (100). This line represented by the equation,
£ ___0.646
on 0.246 *
Re
n P

corresponds approximately to the flow through corrugated pipe. This

(102)

procedure, of course, represents the transition zone as a straight line.
ASSummg the critical pipe Reynolds number occurs at

Rep = 2000,
the term F is evaluated, according to equation (62) for a given Reynolds
number inghe seal, by computing the ratio of resistance coefficient for
turbulent flow, using the lower turbulent line in Figure 5, to the resistance

coefficient for laminar flow, both at the pipe Reynolds number of,

Rec
Re = (2000 cos @) T (103)
p crit.
where Recrit. is defined by eguation {3%). The term FTZ , equation (63).
is evaluated in a similar manner except at a pipe Reynolds number of,
Re
Re = (2000 sinat) —E— , (104)
P Re .
crit.

and using the upper turbulent line in Figure 5. The quantities K 4 which is

a function of F ; , and KS’ which is a function of FT[ , can now be

determined. =
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When the operation of the seal is laminar, i.e., F and F
are equal to one, K, and K_ are both unity and the sealing cogfficient

4 5
becomes identical to equation (18). As the speed increases, F§ increases

causing K, to decrease and thus the sealing coefficient begins™to decrease.

At even hi‘lgher speeds, F also begins to increase causing K5 to decrease,

producing a greater decrease in the sealing coefficient. A computer pro-

gram, compiled for an I.B.M. 7040 computer, to determine the theoretical

sealing coefficient is found in Appendix B.

III. GENERALIZING THE THEORETICAL SEALING COEFFICIENT FOR
LAMINAR AND TURBULENT OPERATION

In Figures 6 through 9 the theoretical sealing coefficients
(hereafter referred to as A T) , equation (97), as a function of B for
various values of Reynolds number, a, and 7 are shown. Several obser-
vations may be made regarding these figures:

1. The optimum screw geometry in the laminar range is not the
optimum geometry for turbulent operation. As shown in Figure 6, a seal
having an @ of 5.81° has a minimum sealing coefficient for laminar
operation when 7= 0.5and B= 6.5. However, when operation becomes
turbulent the minimum value of the sealing coefficient is found at higher
values of Tand B. At higher a values the same observation can be made.
However, the shift in the optimum B becomes smaller.

2. The B producing the minimum sealing coefficient in the
turbulent range increases with increasing Reynolds number. This effect
is less significant for large a than for small a.

3. In both laminar and turbuleni ficw, 2 given change in B

- produces a greater change in . A with screws having large a than with

T
small a. Thus, from the standpoint of pressure stability the lower values

of a are to be preferred.

4, In laminar operation the optimum 7 for any screw is 0.5.
However, in turbulent flow the sealing coefficient is improved slightly

as 7 is increased from 0.5 to 0.7.
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Figure 6. Theoretical sealing coefficient as a function of 8, Rec,

and ¥ fora= 5.81°. c=0.003in.., and D= 1.25 in.
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Figure 9. Theoretical sealing coefficient as a function of B, Reg,
and ¥ fora = 20.15°, ¢= 0.003 in., and D= 1,25 in.
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5. For seals which must operate in both the laminar and tur-
bulent regions, the smaller helix angles will give the best values of the
sealing coefficient for both regions.
6. The transition from laminar to turbulent operation is a

function of 7 . As 7 increases the onset of turbulence occurs at lower

Reynolds numbers.
7. As the visco seal operation begins to be turbulent the effect

of 7011 AT at the larger B values is rather pronounced. However, as
the degree of turbulence increases this effect becomes less pronounced.
8. At a Reynolds number of 100, AT is the same as the one

computed in equation (18), which is independent of Reynolds number.
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CHAPTER III
TEST FACILITY AND EXPERIMENT PROCEDURE
I. TEST FACILITIES

The visco seal test section and drive is shown in Figure 10.
A detailed description of the design and construction of the experimental
facility is presented in Reference [14] . A schematic diagram of the test
section is shown in Figure 11. The sealant fluid, which was distilled
water in all tests reported, was introduced under regulated pressure
through the sealant inlet. Pressure taps and thermocouples are located
along the axis of the test sleeve, the dimensional location of which are
shown in Figure 12. Inductance probes located in two planes and 90°
apart are used to determine the eccentricity between the test sleeve and
spindle. A torque arm connected to a strain gage bridge is used to measure
the frictional torque. Since the torque measured under some operational
conditions is very low, the test sleeve is mounted on eight hydrostatic
bearing pads to minimize static friction. The dimensions of the test
spindles are presented in Table III. Test spindles 1, 2, 3, 4, 2B, 3B,
and 4 B shown in Figure 13, were threaded the total seal length. Spindles
5, 6, and 7, shown in Figure 13, were constructed with end dams in order
to study the end effects of the seal and the phenomenon of air ingestion.

II. TEST PROCEDURE

During a test run the data recorded included spindle speed,

torque, eccentricity, pressure distribution, and temperature distribution.

Using the information in Table III, the recorded experimental data, and the

st fluid, the experimental sealing coefficient
(hereafter referred to as AE) , dissipation function, and the friction
parameter were calculated. Lambda, dissipation function, and friction
parameter were plotted versus Reynolds number based on the clearance.
The quantity AP/L in equation (97) for AB may be interpreted
in two ways. In a practical application this value should be (Psupply -
Patmosphere )/L. However, in this study the effect of screw geometry

on the sealing coefficient was a factor of major concern. Therefore, in
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Figure 12.
seal.

'Typical pressure and temperature gradients in the visco
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order to minimize the end effects, the AP/L was interpreted as dP/dL and
evaluated as shown in Figure 12. The viscosity of the test fluid was
evaluated at an average temperature determined from the distribution as

shown in Figure 12. The temperature variation in the seal was quite small

being on the order of 2 degrees F.
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CHAPTER IV
EXPERIMENTAL RESULTS

The geometry of spindle number 1 was made similar to the one
employed by McGrew and McHugh for the purpose of comparison of exper-
imental results. A geometrical comparison of the two test spindles is shown
in Table IV.

During the initial tests of spindle 1, a number of minor problems
were encountered. These problems included a ruptured oil filter, a number
of pressure tap lines which were quite long and difficult to bleed, a large
cavity at the inner end of the test seal which proved to be an air trap, and
low sensitivity in the torque measuring bridge. The details of these
difficulties and corrections are presented in reference [14] . After modi-~
fication of the test apparatus, the data compared favorably in the turbulent
range, as shown in Figure 14, to the experimental curve of McGrew and
McHugh. In the laminar range, however, the value of McGrew and McHugh's
experimental curve is higher than the value of the present data, equation
(18), or equation (15) which was derived by McGrew and McHugh.

1. SEALING COEFFICIENT

A summary of test results is presented in Table V. Using the
theory developed in Chapter II, the theoretical sealing coefficient is
compared with the experimental values in Figures 14 through 17,

For all spindles tested AB remained essentially constant
during laminar operation. This result is in agreement with equation (18)
which 1ndicates that A # f(Re ) in the laminar region. The average ratio

c
of ./ \ to 1\ for laminar operation is 0.968. During the turbulent

operation of eazh of the seals 2, 3, 4, 2B, 3B, and 4B, the ratio of A
to A remained essentially constant. However, because of the variation
of slopes in the turbulent region for test series 5, 6, and 7, the ratio of
A E to A was not constant.
With the onset of turbulence A begins to decrease with
increasing Reynolds numbers. The Reynolds number at which transition

from laminar to turbulent operation occurs is a function of 7 In test series
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2, 3, and 4, the three test spindles have essentially the same a, 8, ¢, and
D with variations in 7 only. Spindle 2, having the lowest 7, resulted in
the longest laminar operational region, while spindle 4, with the largest 7 ,
resulted in the shortest operational laminar region, as may be observed in
Figure 15. Thus, as 7 increases the transitional Reynolds number de-
creases. The decrease in the transitional Reynolds number, defined in
equation (99), is to be expected since the average clearance in the seal is
increasing. This direct relationship between the onset of turbulence and
7 is in agreement with the theoretical projection in Chapter II.

The relationship between o AE was demonstrated in test
series 5, 6, and 7. The geometric parameters of spindles 5, 6, and 7 are
essentially the same as for spindles 2, 3, and 4 with the exception of o
which was decreased from 9.67° to 5.81°. In tests of seals having a's
of 9.67 and 14.5°, the slope of /\_, d /\ _/dR_,in the turbulent zone
was approximately ~0.70, which agrees with the theoretical prediction of
-0.709. However, for ana of 5.81° the value of d /\ /dR_was found to
be approximately -0.43 for the range of experimental data recorded. The

relationship between A and @ is demonstrated in Figure 18. In this

figure it is observed thatT A T for @ equal to 5.81°, remains laminar to

a Reynolds number of 300, while for @ equal to 20.15°, AT begins to
decrease at a Reynolds number of approximately 100. Therefore, as
increases the transition point from laminar to turbulent operation for AT
decreases. However, it is noted from Figure 18 that, for either large or
small a's , the predicted slope, d AT/ dRec, for Reynolds numbers greater

Al o TNnAN 1. P Tou 2L S - - A A
inan 1000, 15 the same. In this iegara ‘.E ana  J ;T aC not

The effect of 8 on A may be observed in Figures 19, 20, and
21. In series 2B, 3B, and 4B ¢ a.nd T remain unchanged from series 2, 3,
and 4, while B was decreased from approximately 7 to 3. A for 2B, 3B,
and 4B is, on the average, 1.29 times the values for spindles 2 3, and 4
in both laminar and turbulent operation. This ratio compares favorably

with theoretical predictions which indicate that the ratio should be 1.28.
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In test series 2B there is a sudden large increase in AE at a Reynolds
number of approximately 1600. This discontinuity in AE is believed to be

the result of air ingestion which produces a decrease in the value of B. A
similar observation was made for spindles 3B and 4B, but the perturbation
was much lower in magnitude.
A forecast of AT for test spindles 5A, 6A, and 7A, which have
yet to be tested, is shown in Figure 22.
II. FRICTION PARAMETER AND DISSIPATION FUNCTION
The power loss in the visco seal during laminar operation was

described by Stair iif terms of a dissipation function defined by the equation:

' (105)

D =1-7+ 7 2Ta-Tyre-n2a-7+ 78

+ 3
B 83(1+t2)+t27(1—7:)(63-1)2

nu DLU

where q is the power loss. The dissipation function depends upon @, B, and
7 and is independent of rotational speed. The friction parameter may be

defined in terms of the dissipation function as:
47 @
- . = d l
F.P Re. (107)

Thus, F.P. is a function of the seal parameters and speed. The laminar experi-
mental data for the friction parameter are in agreement with equation (107) as

shown in Figures 23, 24, and 25. The experimental data in the turbulent range

®
7
p)
=
D
3

follows the trend noted by Smith and Fuller {16} whose data for th
parameter of a plain journal bearing operating under laminar and turbulent

conditions can be expressed as:

P.Pl =4 :t/Rec, (108)

and

F.P._ =0.156 n/Re

~

0.43
. . (109)
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As the visco seal more nearly approaches a journal bearing, 7 becoming
smaller, the experimental data for the friction parameter approaches the
laminar experimental curve presented by Smith and Fuller. In the turbulent
region, however, the experimental data for the seal is approximately 1.051
times that of Smith and Fuller's. Thus, in laminar operation the friction
parameter is described by equation (107) and during turbulent operation Smith
and Fuller's turbulent journal bearing resulis can be utilized to estimate the
friction parameter.

III, AIR INGESTION

The phenomenon designated "seal break" by McGrew and McHugh
and "secondary leak" by King was not observed directly during this experi-
mental study. The term "seal break" referé to a small leak past the seal
interface. However, in the present series of tests, a phenomenon which has
been termed "air ingestion" was quite evident. Air ingestion is a condition
in which air is forced, by the action of the screw exposed to air, thrdugh the
seal interface into the seal. During laminar operation air ingestion was not
observed. However, as the speed and degree of turbulence increased, air
bubbles began to rise in the pressure tap lines. Continuous bleeding would
not remove the entrapped air from the system once the condition of air
ingestion was present. Air ingestion tended {0 decrease the pressure
gradient near the atmospheric end of the seal, which, in turn, increased
the effective length of the seal. The seal would not leak unless the effective
seal length required to maintain the seal supply pressure became longer than
the actual seal length or pressure fluctuations caused a slug of fluid to be
discharged.

Air ingestion was found to be related to the surface wetability
and Reynolds number of the seal. In a test series for spindle 1, in which
wetting conditions were present, the air ingestion became severe leading to
pulsating pressures which caused the series to be stopped. It was observed
that air ingestion and seal instability during this test began at a much lower
Reyvnolds number than in previous tests. Care was taken in all later tests

to insure that the condition of shaft wetting did not reoccur by coating aii
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test spindles with a very thin film of oil.

Air ingestion may have a pronounced effect on AE in the tur-
bulent region under certain operational conditions. In series 2B, Figure 16,
it is postulated that air ingestion, by displacing fluid at the root of the
grooves, caused a decrease in B with a consequent increase in AE' as
demonstrated in Figure 26. As shown in Figure 7, for a Reynolds number of
1000 and B = 3, a small decrease in B produces a large increase in the
value of A T This same discontinuity was observed to a smaller degree
in the data for spindle 3B and smaller yet in spindle 4B. While the B8 for
3B and 4B were similar to that for 2B, the groove widths were greater. It
is believed that the wider grooves made the displacement of liquid from the
root of the groove more difficult and this prevented the change in A E from
being as great as in 2B. As long as the seal's operational point is located
along the flat portions of the curves in Pigures 6 through 9, a change in B
due to air ingestion produces only a small change in the sealing coefficient.
Also, the larger the value of 7 . the lower the change in B when air ingestion
is present. In order to minimize the effects of air ingestion and improve seal
stability, it appears desirable to select the seal geometry with a low @, high

’,)/ , and large B values as suggested in Figures 6 through 9.
IV. LONG TERM SEAL OPERATION

To insure the feasibility of operating the visco seal for extended
periods of time, a series of long term tests of one to two hours duration were
conducted for each of the spindles, beginning with 2B. In each case equi-
librium was reached in 15 to 20 minutes of seal operation. No seal leakage
was observed during these long term tests and air ingesticn was not observed
in laminar operation. In each of the turbulent tests air ingestion was observed
to some degree. However, a Reynolds number was reached where it appeared
that long term operation of the seal was not desirable. The maximum Reynolds
number at which the seal can operate in an equilibrium condition in the
turbulent zone is related to the spindle parameters. Further experimental

studies are needed before definite conclusions can be made regarding the
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Air bubbles grow to form a
pocket at root of grooves

Figure 26. Schematic representation of the change in B due to air
ingestion.
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maximum speed.
V. OTHER EXPERIMENTAL RESULTS

The effect of the eccentricity ratio on AT was predicted by
McGrew and McHugh in equation (15) to vary as E varies from 1 to 2.5 for
eccentricity ratios of 0 to 1. For laminar operation, however, AE'
in the absence of air ingestion was found to be essentially independent
of the eccentricity ratio, while in turbulent operation AE was noted to
decrease slightly with an increase in eccentricity ratio as can be observed
in Figure 14. It appears, therefore, unnecessary to incorporate the eccen- -
tricity ratio as a significant variable in the equation for A T in the laminar
range. It was noted, however, that eccentric operation of the seal in the
turbulent range tended to increase air ingestion.

In Figure 27 the experimental data taken from a series of tests
conducted by King, along with AT computed by equation (97) for the thread
geometry used by King, are shown. The predicted sealing coefficient is in
good agreement with the 5D and 2E series of data in the turbulent range. In
the laminar range the predicted value for the sealing coefficient is smaller
than King's extrapolated data curves. It is difficult to draw conclusions
about the laminar zone since King obtained limited data in this region. In
series 3C and 1B, the slopes of King's experimental sealing coefficients are
-0.527 and -0.466, agreeing with the slopes of AE in test series 5, 6, and
7. Data curves 5D and 2E have slopes in the turbulent region of -0.706 and
-0.686, which are similar to the values obtained in test with spindles 1
through 4B, as discussed in Chapter IV. From the experimental evidence
reported in this work, along with data fivii King, the indication is that for
small helix angles, 3° to 6°, the initial slope of the experimental sealing
coefficient in the turbulent zone is approximately -0.46. For helix angles
of 7° to 14° corresponding to the range of optimum ¢ recommendations of
various investigators, the slope -of the experimental sealing coefficient is

approximately ~0.70.
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CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

Based on the analytical laminar analysis of the visco seal
developed by Boon and Tal, equations were derived to predict the operation
of the visco seal in the laminar and turbulent regions. The theoretical
sealing coefficient developed by this analysis was compared with the experi-
mental sealing coefficient obtained for ten experimental seals. In view of
the observations and comparisons presented in this work, the following
conclusions are indicated:

1. The laminar analysis leading to equation (18), upon which the
present analysis is based, agrees more closely with the experimental
results in laminar flow than any of the other analytical approaches con-
sidered.

2. The optimum screw geometry for laminar operation was not optimum
for operation in the turbulent range.

3. For screws which must operate in both the laminar and turbulent
range, smaller helix angles will provide more flexible operation in both
regions.

4. In turbulent operation the visco seals having small helix angles
operate with a greater degree of pressure stability.

5. Experimental A is essentially constant in laminar operation and
in agreement with equation (18).

6. The transition Reynolds number at which AE begins to decrease,
decreases with increasing 7 and is in agreement with equation (99).

7. The slope of AE in the turbulent range for helix angles of 9,67°
and 14.5° was approximately -0.70, while this value decreased to -0.43
for helix angles of 5.81°,

8. The phenomenon of air ingestion will be encountered in turbulent
operation. This condition was observed to be a function of shaft wetability,
Reynolds number, seal geometry, and eccentricity ratio, but until more

experimental data are obtained this relationship cannot be precisely defined.
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However, in order to minimize the effects of air ingestion on AE , large B
and 7 along with small o should be employed.

9. An attempt was made in test series 5, 6, and 7 to alleviate the
problem of air ingestion. End dams, as shown in Figure 13, were added to
minimize the condition, although the end result was not as effective as was
expected. The decrease in air ingestion was slight necessitating the con-
clusion that more data are needed before a concrete relationship between
end dams and air ingestion can be determined.

10. There exists a maximum Reynolds number beyond which long term
operation is no longer feasible. However, more experimental data are
needed before this value can be precisely defined.

11. The frictional losses in the visco seal may be described with
existing equations. In the laminar range the theoretical predictions by
Stair closely approximate the experimental data. During turbulent operation
the experimental data presented by Smith and Fuller, represented by equation
(109), are 0.95_1 times the value of the friction parameter observed in these
tests. Therefore, the frictional losses in the seal may be calculated either

for laminar or turbulent operation by:

F.Po/(‘ = 43l¢//ReC ’

and

F.P. = 0.164xn/Re 0.43 .
o c

12 . For laminar operation A E is essentially independent of € and under
turbulent conditions the effect of seal eccentricity is slighi.

A number of aspects of the visco seal operation in the turbulent
range require further and more intensive study. Specific problem areas
requiring additional attention are as follows:

1. More experimental data in the turbulent range for Reynolds numbers

higher than 3000 are needed in order to determine the maximum Reynolds

e+
(D
&1

m seal operation.

=
-
O

numbe: o
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2. The construction of test spindles with helix angles of approximately
5° and B's in the range from 10 to 20 are needed in order to verify the obser-
vations discussed in Chapter II concerning the relatively small effect of B
on AT for high Reynolds numbers and small helix angles.

3. A refinement of equation (97) for the calculation of AT is needed
in order to better describe the sealing coefficient in the turbulent region for
small helix angles. It is realized that the two lines in Figure 5 may not be
the best estimate for all geometric parameters.

4. An investigation of the effects of grooves located in the housing
rather than along the shaft would be desirable. This is based on the
assumption that a smooth shaft located in the threaded housing would lessen

the effects of air ingestion on A E*
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APPENDIX A
SAMPLE CALCULATIONS
Equation (97) is the theoretical sealing coefficient for both laminar
and turbulent operation for the visco seal. In order to calculate the sealing
coefficient, the geometric configuration of the seal is needed. For this

example the parameters of test spindle 1 will be used. Hence:

a=14,5°
t=0.2586
p=3.38

7= 0.631

c=0.0042 in.
and
D= 1.2430 in.

From these data, I,, I., I., and I, in equation (37) are evaluated as:

1" 72" 73 4
I =(1—7)t2=0 0246
1 ) '

I, = 637 2 = 1.635

’

3

_ B
3 T+t33 (1—7)

I = 2.595,

and

3
I4=t[1— 1 7’3-1+5 (31‘7)+ e - 1)]=0.364.
7+ a-7)

The critical Reynolds number defined by equation (99) is:

D/2
(1—7)c+:)’Bc

1/2
] = 317,

Re _, =41.1[

Crit. L
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When the operation of the seal is laminar, F e and Fn are both unity.

The terms K, and KS’ in equation (97), can b?e calculated as;:

4
Fa C1-
K,= —>— |1- S + 3 =1
4 ng 10.51&2 =7.5 "5 g5 p _1.4? 3
and §
T [1_ 10 5:71 7.5 °" IZ_FT‘] ]=1
n R/ T 3.92 Fp~ - 1.4 1-*77 -1

Therefore, the predicted sealing coefficient for laminar operation becomes:

I 1 I
A =x, 222k (3) = 1(a.50 +1(7.23) = 11.73,
T M\ I, 5 \1,

which is the same value as obtained from equation (18). When the flow in
the seal becomes turbulent, Fa and/or FTZ is greater than 1. Therefore,

F § is evaluated from Figure™5 as:

f 0.326 Re
F =(—f-°—) = 5 2"53 = 0.00509 Re 0747
f /¢ 64Re - p

A S p

or substituting for Rep from equation (103),

0.747
ReC
F§ = 0.00509 { 2000 cos r .
crit.
Similarly,
.7
[ Rec ] 0.754
F = 0.0101 2000 sinag ———
T? Rec1rit.
Assume ReC = 400. Therefore,
0.747
T = 0.00500 [ 2000 cos 14.5 #‘9" =1.755
§ L 317
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and
400 0.754
FTZ =0.0101 [2000 sin 14.5 (?1—7)] = 1,293
from which
K = 3 1- 1.755
4 2{1.755) 10.5(1.755) - 7.5

+ L= 1.755 ]= 0.639

3.92(1.755)% - 1.4(1.755) - 1

and

K - 3 - 1.293
5 2(1.293) 10.5(1.293) - 7.5

+ 1- ;'293 ]= 0.822
3.92(1.293)° - 1.4(1.293)- 1

The theoretical sealing coefficient at Rec = 400 becomes:
AT

Assume Rec = 1000. Then

= K4 (4.50) +K5 (7.23) = 0.639 (4.50) + 0.822 (7.23) = 8.81 .

1 0.746
1
P§ = 0.00509 [ 2000 cos 14.5 (‘—301070)]

and similarly,
F =2.69 ,

frcm which,

K = 3 - 3.36
4~ 2(3.36) 10.5(3.36) - 7.5
+ 1'5'36 ]=0.365 ,
3.92(3.36)° - 1.4(3.36) - 1

likewise
K. =0.447
2

The theoretical sealing coefficient at Rec = 1000 becomes:
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A

These calculations are repeated for a number of assumed Reynolds numbers

T K4 (4.50) +K5 (7.23) = 0.365 (4.50) + 0.447 (7.23) = 4.885 .

in the desired range of operation from which the theoretical performance
curve may be drawn. A plot of such a curve is presented in Figure 14,
A computer program is presented in Appendix B for the calculation of

A T as outlined above.
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APPENDIX B
COMPUTER PROGRAM FOR THE SEALING COEFFICIENT
The computer program for AT was written in Fortran IV and run
onanl.B.M. 7040 computer. ' The terms in the program are related to the
nomenclature utilized in this report as follows:

A=Il E=13 P5=K‘4 P4=K5

B=I2 F=I4 | P1.=F§ P2=Pn
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VISCO SEAL SEALING COEFFICIENT THEORETICAL A FOR LAMINAR

N B W DN

10
11
12
13
14
15
16

17
20
21
22
23
24
25
26
27

30
31
32
33
34

35
36
37
40
41
42
43

99
95

97

11
12
13
14

15

16
96

10

SENTRY

AND TURBULENT OPERATION

REAL LAMBDA

FORMAT(//4X, 1HC, 14X, 5SHGAMMA, 9X, 5SHALPHA, 13X ,4HBETA, 13X, 1HD/)
PRINT 98

RE=100.

DELRE=100.

READ 99,C,GAMMA ,ALPHA,BETA,D

PRINT 95,C,GAMMA, ALPHA,BETA,D

FORMAT(5(F10.6))

FORMAT(5(F10.6,6X))

T=TAN(ALPHA/57.32)

A=(1=GAMMA)*T*+*2

B=BETA**3*GAMMA*T**2

E=BETA**3/(GAMMA+BETA**3*(1 .-GAMMA))
P=T*(1.-GAMMA+GAMMA*BETA- (GAMMA+BETA**3*(1,-GAMMA)+GAMMA*
1(BETA-1.))/(GAMMA+BETA**3*(1.-GAMMA)))

FORMAT(12X,2HRE, 13X, 6HLAMBDA///)

REC=41.1*SQRT((D/2.)/((1 .-GAMMA)*C+GAMMA*C*BETA))

PRINT 97

DO 10 I=1,30

IF((RE/REC)*COS(ALPHA/57.32)~.575)11, 11,12

pP5=1,

GO TO 13

P1=.00505%{2000.*(RE/REC)*COS(ALPHA/57.32))** 747
P5=6./(2.*P1))*(1.-P1/(10.5%P1-7. 5)#(1.-P1)/3.52*P1*%¥2-1 4*P]
1-1.))

IF((RE/REC)*SIN(ALPHA/57.32)-.225) 14,14,15

P4=1

GO TO 16

P2=.0101*(2000.*(RE/REC)*SIN(ALPHA/57.32))** 754
P4={3./{2.*P2))*(1.-P2/(10.5*%P2-7.5)+(1.-P2)/(3.92*P2%*2-1,4*P2
1-1.))

LAMBDA=P5* (A+B)/F+P4*E/F

PRINT 96,RE, LAMBDA

FORMAT(10X,F6.0, 10X,F8.4)

IF(RE.GE. 1000.) DELRE=400.

RE=RE+DELRE

GO TO 20

END



